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The work in this paper proposes a dynamic structural design model that can be developed
in a rapid fashion. The approach endeavours to produce a simplified FEM developed in
conjunction with an experimental modal database. The FEM is formulated directly from
the geometry and connectivity used in an experimental modal test using beam/frame
elements. The model sacrifices fine detail for a rapid development time. The FEM is
updated at the element level so the dynamic response replicates the experimental results
closely. The physical attributes of the model are retained, making it well suited to evaluate
the effect of potential design changes. The capabilities are evaluated in a series of
computational and laboratory tests. First, a study is performed with a simulated cantilever
beam with a variable mass and stiffness distribution. The modal characteristics serve as the
updating target with random noise added to simulate experimental uncertainty. A
uniformly distributed FEM is developed and updated. The results show excellent results,
all natural frequencies are within 0·001% with MAC values above 0·99. Next, the method
is applied to predict the dynamic changes of a hardware portal frame structure for a radical
design change. Natural frequency predictions from the original FEM differ by as much as
almost 18% with reasonable MAC values. The results predicted from the updated model
produce excellent results when compared to the actual hardware changes, the first five
modal natural frequency difference is around 5% and the corresponding mode shapes
producing MAC values above 0·98.
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1. INTRODUCTION

A need often arises in engineering practice to predict the structural dynamic behavior of
an existing mechanical system for a potential design change. The proposed change may
be necessary to resolve an identified dynamics and/or vibration problem and/or to improve
performance. In many actual situations, a rapid response is more imperative than an
in-depth analysis. The details can be sacrificed for a rapid indication of the correct design
direction to be pursued. Finite element analysis (FEA) is well suited to this design
evaluation task. However, the model development and verification process can be quite
time and manpower intensive. Hence, the FEM development time is often prohibitive
under these constraints. An alternative is to use the structural dynamic modification
(SDM) approach in conjunction with an experimental modal database. However, SDM
changes are typically limited (i.e., point to point spring and point masses). Furthermore,
a SDM is not easily translated into an actual hardware change to the system (i.e., section
area changes, material changes, weldment).

The work, presented in this paper, examines a method focused on this time pressured
design scenario. The method uses an effective FEM developed by an element level updating
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process using an experimental modal database. The FEM is formulated directly from the
experimental modal test geometry and connectivity. The FEM is restricted to beam/frame
elements with a somewhat coarse discretization mesh. Obviously, the coarse character of
the effective model will not have the capabilities of a fully developed FEM and will be
insufficient for certain analysis (i.e., stress analysis). However, the effective FEM strives
to obtain the global dynamic characteristics (i.e., first 10 natural frequencies and mode
shapes). The effective FEM has the characteristics: (1) rapid development time; (2) the
original model’s physical significance is retained; (3) similar dynamic behavior as the
experimental modal analysis results; (4) the model allows hardware parameters to be easily
changed (i.e., dimensions and material properties) and items added (i.e., a strut). These
characteristics make the proposed method appear well suited to perform rapid design
change evaluations for existing hardware.

2. EFFECTIVE FEM METHOD DEVELOPMENT

The proposed method is based on a coarse mesh FEM using beam/frame elements. Any
redesign requires that the initial FEM be sufficiently accurate to perform the analysis. In
reality, this assumption is often not valid and the FEM usually needs to be ‘‘fine tuned’’
or ‘‘updated’’ to achieve the required level of accuracy. Two major questions arise
concerning this approach: (1) how accurate and effective can a FEM be based on
beam/frame elements and a coarse mesh; (2) how can the FEM be updated in a fashion
which will allow effective redesign? The following sections address these concerns.

2.1.    

FEM modelling requires a variety of decisions such as the continuum discretization,
element selection and boundary conditions. The model development depends on the
desired results and the analysts’ engineering judgment. Obviously, the more detailed the
analysis (i.e., localized stresses) the more complicated the modelling (i.e., element types,
number of elements). However, a number of studies have demonstrated that it is possible
to accurately obtain low order global dynamic characteristics (i.e., natural frequencies and
mode shapes) and forced vibration response using a coarse mesh and frame elements. For
example, dynamic results for an automotive engine cradle obtained from a plate element
FEA model (a fine mesh with over 16 000 DOF) compared very favorably to a beam
element FEM with less than 500 DOF [1]. For eigenvalue analysis purposes it was
demonstrated that a uni-body automotive structure can be modelled with a relatively few
number of beam elements [2]. It was also shown in reference [3] that the dynamic response
of an automobile structure is primarily influenced by its major load carrying members, with
the sheet metal sections being far less important. Hence, it was concluded that beam
elements lend themselves well toward modal studies of uni-body automotive structures. It
was also suggested that beam element FEMs of uni-body vehicle structures can be made
generic, in the sense that different designs can be modelled by merely changing beam
dimensions [3]. For example, the passenger compartment can readily be ‘‘stretched’’, the
trunk ‘‘shortened’’, or the roof ‘‘widened’’. In references [4,5] a complete automobile,
including suspension, was modelled with approximately 200 frame elements. The model
produced good correlation with experimental modal analysis results of the corresponding
automobile structure. Forced vibration analysis using road profiles as the wheel inputs
computed using the model correlated well with actual vehicle recorded responses.
Additionally, the main support structure of a high speed precision machine tool was
analyzed with as few as 10 elements [7] yielding excellent correlation to actual experimental
responses measured during a work sequence. Hence in certain situations, it is possible to
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obtain accurate modal characteristics and forced response predictions for complicated
structures with relatively low numbers of frame elements [8].

2.2.  

To improve the ability of a FEM to respond in a similar fashion as the mechanical
hardware requires some form of correlation with experimental data. Due to the critical
design reliance on these FEMs, a significant amount of research has recently been devoted
to developing updating methods [9]. Most approaches use data from an experimental
modal analysis as the target and adjust the FEM’s parameters until the natural frequencies
and mode shapes agree. Only after the confidence of the FEM has been ensured, can it
be applied to investigate effectively the dynamic response of a structure.

A variety of FEM updating methods have been proposed and can be separated into two
broad categories: (1) direct updating using experimental modal test results via closed form
optimization based procedures and (2) updating via the eigenvalue and eigenvector
sensitivity with respect to the system’s parameters. The basic idea relies on orthogonality
properties, between the mathematical model (mass/stiffness matrix) and measured
quantities (mode shapes/natural frequencies). Several closed form relationships [10–12]
have been proposed. The techniques use the orthogonality characteristics while minimizing
the changes of the weighted mass/stiffness matrices. To implement the closed form
updating, either matrix reduction [13, 14] or mode shape expansion [15, 16] is required.
Matrix reduction suffers from the inability to recover the full size matrices after updating.
Whereas, mode shape expansion usually is computationally intensive and is suitable only
when the initial FEM is relatively accurate. The updated results reveal that original element
connectivity is destroyed and hence the physical significance of the resulting FEM mass
and stiffness matrices (i.e., negative values at some specific DOFs and entries appearing
which were previously non-existent). Further application of the updated FEM for design
change evaluation is precluded. Procedures have been proposed [17] that retain element
connectivity but the positive definite characteristic of the updated matrices is not assured.

Alternative updating approaches use the sensitivities of the dynamic system’s eigenvalues
and eigenvectors with respect to the parameters [18–20]. The basic eigendata sensitivity
formulation appears straightforward [21], however practical application can be tedious and
difficult [22]. There are two broad categories, underdetermined and overdetermined
methods. The underdetermined process has fewer constraints than design variables and the
cost function is optimally minimized subject to constraints. The overdetermined process
uses a least squares approach to minimize the constraint error.

The use of experimental modal analysis results to update a FEM has been widely
explored recently. Unfortunately, no single method has become widely accepted. The
reported successful applications have been developed and applied to specific types of
problems. All of the present updating methods have at least one or more of the following
problems: (1) loss of physical significance in the updated mass and stiffness matrices with
respect to the original model; (2) inaccuracy of the results; (3) sensitivity to uncertainties
in the experimental modal data; (4) numerical difficulties which affect convergence to a
final solution.

Most updating methods strive for good correlation between the computational and
experimental results at the expense of the model’s physical significance. From a design
point of view the physical significance of the model must be retained.

2.3.    

The effective FEM is based on a sensitivity scheme and uses the concept of updating
at the element level. The updating variables are contained in a vector, {P}, and can be
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tailored to the problem. The updating variables may represent a multiplicative constant
for each element or may be more specific such as each element’s cross-sectional area (A)
or area moment of inertia (I).

In this work, [m]iFEA and [k]iFEA represent the elemental mass and stiffness matrices for
the ith element and {Pi} the updating variables. A nomenclature list appears in the
Appendix. The updating is accomplished by establishing the sensitivity of the system’s
eigendata with respect to each individual element’s physical properties (i.e., density,
cross-sectional area, and moment of inertia). A classical quadratic optimization method
is implemented to determine the updated set of element properties. If each individual FEM
element has only one updating parameter, the updated global mass and stiffness matrices
may be generalized as

[M]UPD = s
NE

i=1

s
k

j=1

Pij [mpj ]i +[m0]i , [K]UPD = s
NE

i=1

s
k

j=1

Pij [kpj ]i +[k0]i . (1, 2)

Multiplying equations (1) and (2) with mode shape vector {f} results in

[M]UPD (f)= [M0] (f)+ [Mp f] (P), [K]UPD (f)= [K0] (f)+ [Kp f] (P). (3, 4)

Two updating processes are developed: (1) selected experimental natural frequencies are
used as the updating targets (OPUNF—optimization process for updating natural
frequency) and (2) selected mode shapes are the updating targets, with constraints placed
as to not alter the natural frequencies (OPUMS—optimization process for updating mode
shape).

For ease of implementation, the eigendata differences between the initial FEM and the
experimental results are linearly approximated with Jacobian matrices (the sensitivity of
eigendata with respect to updating variable vector {P}) by equation (5):

{Dl}=[9l] (DP), {Dfi}=[9fi ] (DP). (5)

The Jacobian matrix of eigenvalues with respect to the updating variable array is derived
following procedures in reference [15]:

(f1) ([Kp f1]− l1 [Mp f1])

(f1) ([Kp f2]− l2 [Mp f2])
G
G

G

G

G
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k
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G
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G
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L

l

[9l]=
1(l)
1(P)

= ···
. (6)

(fn ) ([Kp fn ]− ln [Mp fn1])

The Jacobian matrix of a specific eigenvector with respect to the updating parameters
based on [16] can be formed as

[9fi ]= 1(fi )/1(P)= [Vi ]+ (fi ){Gi}T. (7)

Using procedures in reference [16] and equation (7), the following relationship can be
derived:

([K]− li [M]) [Vi ]= ([Kp fi ]− li [Mp fi ])+ [M] (fi ) (fi )T([Kp fi ]− li [Mp fi ]). (8)

[Vi ] can be resolved with the procedure [15, 16]. Using orthogonality and by further
manipulation the coefficient vector {G}T can be obtained by

{G}T =−(fi )T[M] [Vi ]− 1
2 (fi )T[Mp fi ]. (9)
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Equations (5–9) can then be used to form the respective optimization problems to
accomplish the updating.

The OPUNF is based on the optimization problem cast as

Minimize 1
2 {DP}T(DP) subject to {Dl}=[9l] (DP) (ILB)E (DP)E (IUB).

(10)

The OPUMS is based on the optimization problem cast as

Minimize 1
2 s

Nm

i=1

>[WTi ] [(D8i )− [9ci ] (DP)]>

Subject to {0}=[9l] (DP) (ILB)E (DP)E (IUB), (11)

where (D8i ) and [9ci ] are defined as

{D8i}=
(fEXP

i )
z(fEXP

i )T(fEXP
i )

−(fFEM
i )

z(fFEM
i )T(fFEM

i )
, [9ci ]=

[9fFEM
i ]

z(fFEM
i )T(fFEM

i )
. (12, 13)

[WT] is a weighting matrix, depending on the confidence of the measured experimental
data. In this study, it is set as an identity matrix.

Both updating procedures take the form of a linear estimation in a constrained
optimization process. If the initial FEM results are close to the actual structure, small
updating parameter changes can be expected and the linear estimation works well.
However, in practical application, the FEM may not be sufficiently close. In this situation
the updating uses a partitioning procedure.

2.4.    

Two updating procedures, NFU (natural frequency updating) and NF-MSU (natural
frequency–mode shape updating), are used. The NFU procedure utilizes only the OPUNF
process, equation (9), in an iterative manner. The NF-MSU procedure iteratively uses both
OPUNF (equation (9)) and OPUMS (equation (10)). The basic concept of the NF-MSU
procedure is to update natural frequencies first and then attempt to obtain a better
correlation between the updated FEM and experimental mode shapes without changing
the natural frequencies. The coding is performed in MATLAB.

A flow diagram illustrating the multiple step updating processes is shown in Figure 1.
The overall updating procedure may be outlined as follows:

(1) Obtain the FEA model to be updated and the complementary set of experimental
modal data.

(2) Determine the updating parameters, Pi , and optimization variables, DPi , where
Pi =1+DPi . Assemble the updating coefficient array {P}.

(3) Establish allowable upper and lower optimization variables bounds, (PUB0) and
(PLB0), for the entire procedure: (PLB0)E (DP)E (PUB0) where (PLB0)E 0 and
(PUB0)e 0.

(4) Establish allowable upper and lower optimization variables bounds, (IUBi) and
(ILBi), for a single optimization step: (ILBi)E (DPi)E (IUBi) with (ILBi)E 0 and
{PUBi}e 0 and where i represents the ith optimization step.

(5) Apply the natural frequency updating NFU process.
(6) Apply the mode shape updating MSU process.
(7) If necessary, step 5 and step 6 may be repeated to guarantee that the natural

frequencies and mode shapes of the updated FEM remain close to the experimental target
values.
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The updating parameters potentially may lose their practical meaning if the values
change drastically in the least squares optimization process. To overcome these potential
problems, upper and lower bounds on the updating variables are set. Furthermore, large
changes in the updating coefficients may affect the accuracy of the linear estimation via
the Jacobian matrix. Therefore, the changes in the optimization variables must be kept
small. The optimization variable upper and lower bounds are adjusted after each step [24].
From experience, if the bounds do not exceed 5% of the original value, (ILBi)= (−0·05)
and (IUBi)= (0·05), the linear estimation works well. Since each process is formulated as
a classical quadratic optimization problem it may be solved using the projection technique
[25].

3. SIMULATION STUDY

To evaluate the elemental updating process a computer-based test was performed.
Initially, a cantilever beam FEM with varying stiffness and mass is developed and serves
as the baseline structure. The varying stiffness and mass values are created by applying
a multiplicative constant between 0·8 and 1·2 to the respective elemental matrices. An
eigenanalysis of the baseline FEM serves as a simulated experimental modal database.
Next, a FEM with a uniform mass and stiffness distribution is developed. The elemental
updating procedure is applied to the uniform based FEM in an effort to match the
simulated experimental results (varying mass and stiffness distribution). Since the set of
multiplicative constants in the baseline FEM (varying mass and stiffness beam) in essence
represents the updating coefficient array, a direct comparison to the optimally updated
results will allow the capabilities of the updating method to be examined.

The cantilever beam FEM has nine equally spaced consistent mass beam elements with
the properties summarized in Table 1. The varying mass and stiffness characteristics are
defined by nine multiplicative constants applied to each element’s respective mass and
stiffness matrices. The vectors are denoted with ‘‘Exp’’ subscript to infer the experimental
values while the subscripts ‘‘m’’ and ‘‘k’’ correspond to the respective mass or stiffness
element matrix:

{Pm}Exp = {0·8, 1·0, 1·0, 1·2, 1·2, 1·2, 1·0, 1·1, 1·1}T,

{Pk}Exp = {0·8, 1·0, 0·9, 1·0, 1·0, 0·9, 0·9, 0·9, 0·9}T.

These arrays indicate that the mass matrix of element 1 will be multiplied by 0·8 before
being placed in the global mass matrix. Similarly, the stiffness for element 3 will be
multiplied by a factor of 0·9 before being placed in the global stiffness matrix.

The ‘‘experimental’’ FEM results are created to more closely simulate what would be
actually obtained in an experimental modal analysis. In an experiment, the number of
modes estimated is usually considerably lower than for a FEM. Therefore, data for only
the first five modes will be retained and all higher modes discarded. Since rotational
information is difficult to measure, it is rarely included in experimental mode shapes. To
retain this realistic characteristic, all rotational degrees of freedom are eliminated from the
modal vectors leaving only the translational components. Inherent experimental errors
produce a degree of uncertainty in all experimental modal analysis results. To simulate this
uncertainty, 2% random noise was added to the natural frequencies and 5% random noise
was added to the mode shapes (percentages referenced to the baseline FEM data).

The uniform beam FEM is formed with nine consistent mass beam elements using the
geometric and properties as above. In essence this represents the same model as the
simulated experimental model (baseline FEM), but with {Pm}FEM = {1} and {Pk}FEM = {1}.
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This FEM represents the model that the analyst would initially produce and would be in
need of updating before performing any design analysis.

To investigate the capabilities the two different updating procedures, NF-MSU and
NFU, are applied. The first approach, NF-MSU, involves both the OPUNF and OPUMS
iterative updating algorithms. The FEM is first updated only by OPUNF (based solely
natural frequency constraints) and secondly, the OPUMS process is applied to improve
the mode shape correlation. The updating procedure attempts to first adjust the natural
frequencies then secondly adjust the mode shapes to the experimental results. In NFU,
only the OPUNF algorithm is applied to update the FEM. The iterative sequencing of the
both NF-MSU and NFU procedure is listed in Table 2.

The data sets discussed above can be summarized as:
(1) ‘‘Baseline Model’’ is the FEM with a varying mass and stiffness using the elemental

multiplicative constants arrays {Pm}Exp , and {Pk}Exp .
(2) ‘‘Initial FEM’’ is the FEM of the uniform beam.

Figure 1. Flow diagram of NF-MSU updating procedure.
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T 1

Properties of the uniform cantilever beam

Length (m) Width (m) Height (m) Density (kg/m3) Young’s modulus (N/m2)

7·73E−1 2·413E−2 6·35E−3 7·806E+3 2·07E+11

(3) ‘‘NF-MSU Updated FEM’’ is the FEM updated by iteratively applying the OPUNF
and OPUMS optimization processes.

(4) ‘‘NFU Updated FEM’’ is the FEM updated by using only the OPUNF optimization
process.

(5) ‘‘Noise Free Experimental Data’’ is the simulated experimental modal database
determined by truncating the FEM in item 1 after mode number five and discarding the
rotational degrees of freedom.

(6) ‘‘Simulated Experimental Data’’ is obtained by adding random noise 2% and 5%
with reference to the respective natural frequencies and mode shapes from the noise free
experimental data described in item 5.

Table 3 compares the natural frequencies of the first five modes from two simulated
experimental data sets (with and without noise), the initial FEM, and the updated FEMs.
It is observed that both updating procedures, NF-MSU and NFU, produce results where
the first five natural frequencies agree very closely to the ‘‘experimental’’ data.

Recall that only five modes are used for the simulated experimental modal databases.
For analysis purposes, the updated results for the higher modes also have been included.
Figures 2 and 3 compare the differences between the experimental natural frequencies and
the three finite element models (initial and two updated FEMs) for the higher truncated
modes. Significant improvement in natural frequency correlation is realized even though
these higher modes are not explicitly considered in the updating process. It can also be
observed that the results from the NF-MSU procedure are better than those obtained from
NFU procedure. As would be expected, the updated results are better for the noise free
case. However even in the presence of noise, the higher mode natural frequencies for the
updated FEM show significant improvement over the original values.

A visual inspection of the modal assurance criteria (MAC) (Table 4) is applied to
quantify the mode shape correlation for the first five modes between the various models
showed are excellent correspondence with only minor differences. For the experimental
data case, the NF-MSU updated FEM produces a slightly better mode shape correlation.
For the noise free experimental data case, the NF-MSU updated FEM reveals excellent
mode shape correlation with respect to the baseline FEM (MAC values close to unity).
Whereas, the NFU updated FEM does not show improvement.

T 2

The iterative sequencing used to update the cantilever beam

Procedure Updating process sequence

Simulated experimental data NF-MSU OPUNF-OPUNF-OPUMS-OPUMS-
OPUMS-OPUNF

NFU OPUNF-OPUNF-OPUNF
Simulated noise free experimental data NF-MSU OPUNF-OPUNF-OPUMS-OPUMS-

OPUMS-OPUMS-OPUNF
NFU OPUNF-OPUNF-OPUNF
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T 3

Cantilever beam natural frequency (Hz) comparison from the simulated experimental data
(with and without noise), the initial FEM and the updated FEMs

Mode number
ZXXXXXXXXCXXXXXXXXV
1 2 3 4 5

Initial FEM (Hz) 8·8402 55·404 155·184 304·417 504·388
Simulated 7·978 49·460 141·138 277·442 462·569
experimental data

Updating with simulated NF-MSU updated 7·978 49·460 141·138 277·442 462·569
experimental data FEM

NFU updated FEM 7·978 49·460 141·138 277·442 462·569
Simulated noise free 7·974 49·538 141·988 282·010 463·799
experimental data

Updating with simulated NF-MSU Updated 7·974 49·538 141·988 282·010 463·799
noise free experimental FEM
data

NFU updated FEM 7·974 49·538 141·988 282·010 463·799

A comparison of the updating coefficient array {P} for the four FEMs is shown in
Tables 5 and 6. The FEM updated by NF-MSU procedure reveals the best results and
is particularly apparent in the noise free experimental data case. The NF-MSU updated
coefficients {P} show high accuracy, whereas the NFU procedure does not produce similar
improvement. It may be observed that the mass updating coefficients {Pm} show very good
correlation with the baseline model for the NF-MSU procedure, even in the presence of
noise. However, an interesting observation is that the stiffness updating coefficients {Pk}
do not have similar results.

From this simulation, the following observations can be made:
(1) If the experimental data is noise free, the updated results based on the NF-MSU

procedure produces excellent correlation with the baseline FEM.

Figure 2. Cantilever beam natural frequency differences for truncated modes (modes 6–18) between the
baseline FEM (actual model) and: e, initial FEM; w, NFU updated FEM using the simulated noise free
experimental data; r, NF-MSU updated FEM using the simulated noise free experimental data.
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Figure 3. Cantilever beam natural frequency differences for truncated modes (modes 6–18) between the
baseline FEM (actual model) and: e, initial FEM; w, NFU updated FEM using the simulated experimental
data; r, NF-MSU updated FEM using the simulated experimental data.

(2) The NFU updating coefficients do not converge to the baseline mode. However, the
NFU updated results are no worse than the initial FEM.

(3) Both NFU and NF-MSU, produce updated FEMs with excellent correlation to the
experimental natural frequencies.

(4) The updating results based on the NF-MSU procedure are better than the NFU
procedure. The NF-MSU procedure improves both the frequency and mode shape
correlation. However, the mode shape updating process is inherent more computationally
intensive and usually costs several times the computation effort than using just the natural
frequencies.

(5) Although the NF-MSU procedure is successfully applied in this simulation case, the
potential effect of experimental error in mode shape updating remains difficult. It remains
a topic to be explored further and its applications have to be carefully judged by the
analyst.

T 4

The modal assurance criteria (MAC) for the cantilever beam between the baseline FEM
(actual model), initial FEM, simulated experimental data, NFU updated FEM, and

NF-MSU updated FEM

MAC(1,1) MAC(2,2) MAC(3,3) MAC(4,4) MAC(5,5)

Baseline FEM/initial FEM 0·99996 0·99859 0·99977 0·99705 0·99505
Baseline FEM/simulated 0·99901 0·99957 0·99898 0·99974 0·99936
experimental data

Baseline FEM/NFU updated FEM 0·99996 0·99829 0·99951 0·99688 0·99996
using noise free experimental data
Baseline FEM/NF-MSU 1·00000 1·00000 1·00000 1·00000 1·00000
updated FEM using noise free
experimental data
Baseline FEM/NFU updated FEM 0·99992 0·99926 0·99987 0·99705 0·99516
using simulated experimental data
Baseline FEM/NF-MSU
updated FEM using simulated 0·99999 0·99994 0·99976 0·99986 0·99996
experimental data
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4. DESIGN CHANGE EVALUATION OF A PORTAL FRAME

A portal frame (Figure 4) constructed by joining three separate aluminum beams via
bolted connections is the test object. The approximate dimensions of the two vertical side
members are 508×25·4×6·35 mm and with the cross member beam
406·4×25·4×6·35 mm. The joints were bolted connections made with aluminum ‘‘L’’
brackets having approximate dimensions of 19·05×25·4×3·18 mm on each side.

The analysis evaluates the new modal characteristics if an additional structural member
is placed between the middle of vertical sides of the portal frame as shown in Figure 5
(dotted member). The added member was also bolted and has the same dimensions as the
top cross member. The general evaluation procedure can be outlined as follows:

(1) An experimental modal analysis is performed on the portal frame hardware.
(2) A FEM of the portal frame is developed.
(3) The FEM is updated with the modal test data.
(4) The updated FEM is modified to include the new center structural member.
(5) An eigenanalysis is performed to predict the new structural dynamic characteristics.
(6) The change is physically made and another experimental modal analysis performed.
(7) The FEM results are compared to the experimental modal data to evaluate the

capabilities to predict the changes in the structural dynamic behavior.
The experimental modal analysis used 33 grid points as illustrated in Figure 5 with a

reference accelerometer mounted at node 8. Standard impact testing was used and the
modal data for the first six modes were estimated with StarModal [24].

The FEM was developed with frame elements and 33 nodal points which matched the
geometric locations of the experimental test points shown in Figure 5. All the joints were
modelled by equating the respective degrees of freedom of the connected members.

Both updating procedures, NFU and NF-MSU, were applied to update the portal frame
FEM with the experimental data from the first five modes. The section area, A, and the
moment of inertia, I, for each frame element were used, yielding a total of 64 updating
parameters. The iterative sequence for the updating procedures are listed in Table 7. The
natural frequency updating was implemented with a partitioning process to ensure success
with the linear estimation. Figures 6 and 7 show the updating parameter bounds and the
corresponding updating results. Wider bounds are set around the boundaries and joints
because initially less modelling confidence exists around these regions. Several trends can
be observed from the updating parameter results:

(1) Both the updating coefficient array (PA and PI ) possess symmetric distributions
around elements sixteen and seventeen. This is to be expected due to the inherent symmetry
of the portal frame.

(2) The moment of inertia updating coefficients surrounding the fixed–fixed boundaries
(at node 1 and node 33) decrease more than the other elements. This is reasonable since
more flexibility would be expected than the modelled fixed–fixed conditions.

(3) The largest changes to the moment of inertia updating coefficients occur around
elements 10–13 and elements 20–23. This corresponds to the joint regions and reflects that
less modelling confidence exists. This indicates more attention to the joint modelling is
necessary.

A comparison of the respective natural frequencies is shown in Table 8. The initial FEM
differs from the experimental values by approximately 10–20%. After updating, both
effective FEMs match the experimental frequencies for the first five modes. Furthermore,
both reveal a good correlation for the sixth natural frequency (less than 4%) even though
it was not explicitly used in the updating. The MAC values are listed in Table 9. A visual
inspection of the mode shapes and the MAC values indicate good correlation. From
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Figure 4. Portal frame structure details. The modification is indicated by the center member shown by the
dotted line (. . . . . .).

Figure 5. The FEM nodal points of the portal frame.

Tables 8 and 9, it can be observed that the updated effective FEMs are closer to the
experimental modal characteristics than the initial FEM. Furthermore, the NF-MSU
updated effective FEM reveals slightly better mode shape correlation with the experimental
results.

T 7

The iterative sequencing of both the NFU and NF-MSU procedures for updating
the portal frame FEM. Note, the bold OPUNF indicates that three even iterative

partitions were used to update the natural frequencies

Updating process sequence

NFU procedure OPUNF-OPUNF
NF-MSU procedure OPUNF-OPUNF-OPUMS-OPUMS-OPUMS-OPUNF
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Figure 6. Moment of inertia updating coefficients, PA , for the portal frame FEM obtained via the respective
NFU and NF-MSU updating procedures.

Next, the effect of adding of the center cross member was modelled and evaluated. Three
FEMs for the modified portal frame were developed based on (1) the original FEM, (2)
the NFU effective FEM, and (3) the NF-MSU effective FEM. All modified portal frame
FEMs have a total of 42 frame elements with 42 nodes, using the same co-ordinates as
the test grid points illustrated in Figure 5. In all the FEMs, the effect of bolted joints for
added cross member is considered. The connection is modelled as a welded joint, however
the ‘‘L’’ bracket member thickness is decreased as shown in Figure 5. An eigenanalysis
was performed with each FEM. The structural change was physically made by adding the
center cross member between the two vertical sides of the portal frame. A modal test was
then performed with 42 test points.

The natural frequencies for the modified portal frame from the experiment and
predictions are listed in Table 10. The original FEM produced natural frequency
differences (with respect to the experimental results) around 10% and 18% in the first and
second modes. Whereas, the natural frequency differences from the modified effective
FEMs are within 5% for the first five modes. Furthermore, both the modified effective
FEMs also reveal excellent natural frequency prediction (differences within 4·1%) for the
sixth mode which was not included explicitly in the updating. It is obvious that the natural

Figure 7. Area updating coefficients, PA , for the portal frame FEM obtained via the respective NFU and
NF-MSU updating procedures.



   349

T 8

Portal frame natural frequency (Hz) comparison from the experiment, initial FEM, and
updated FEMs

Modal number
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6

Experiment (Hz) 16·89 83·20 109·06 131·98 287·50 290·95
Initial FEM 20·21 89·14 125·71 159·39 315·09 330·11
Difference (%) 19·67 7·14 15·27 20·77 8·99 13·46
Effective FEM obtained via 16·89 83·20 109·06 131·98 287·50 302·44
NFU
Difference (%) 0 0 0 0 0 3·95
Effective FEM obtained via 16·89 83·20 109·06 131·98 287·50 296·61
NF-MSU
Difference (%) 0 0 0 0 0 1·95

frequency predictions based on either of the updated effective FEMs are more accurate
than the original (non-updated) FEM.

The MAC between experiment and the respective FEMs are listed in Table 11. The
modified original FEM reveals poor correlation for modes three (MAC=0·54) and four
(MAC=0·1). Both the modified effective FEMs reveal excellent correlation for the first
six modes, with the exception of mode four. The mode shape correlation for the third mode
has shown significant improvement from a MAC value 0·54 from the original FEM to 0·98
for both the effective FEMs. The low correlation for mode four in all the FEMs can be
attributed to a poor estimation of the experimental mode shape. Inspection of the
experimental data showed that accelerometer reference location was near a node in mode
four, resulting in unreliable data. Any conclusions drawn about mode four must be treated
carefully.

The following conclusions can be made from these results:
(1) The FEM updating is performed successfully and both the effective FEMs have

excellent correlation with the experimental modal data. Overall, the NF-MSU procedure
reveals slightly better results.

(2) Both the effective FEMs show better dynamic predictions for the modified portal
frame than the original FEM. Again, the new dynamic characteristics predicted based on
the NF-MSU updated effective FEM are better than the other FEMs.

T 9

The modal assurance criteria (MAC) for the portal frame between the experiment, initial
FEM, NFU updated effective FEM, and NF-MSU updated effective FEM

MAC MAC MAC MAC MAC MAC
(1,1) (2,2) (3,3) (4,4) (5,5) (6,6)

Experiment/initial FEM 0·9984 0·9972 0·9936 0·9908 0·9673 0·9948
Experiment/NFU effective FEM 0·9984 0·9980 0·9952 0·9874 0·9339 0·9193
Experiment/NF-MSU effective FEM 0·9984 0·9986 0·9974 0·9922 0·9805 0·9708
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T 10

Modified portal frame natural frequency (Hz) comparison from the experiment, modified
initial FEM, the modified NFU updated effective FEM, and the modified NF-MSU updated

effective FEM

Modal number
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6

Experiment (Hz) 22·09 80·84 116·91 138·56 294·13 310·75
Initial FEM 24·19 95·32 126·09 140·80 317·7 346·75
Difference (%) 9·51 17·91 7·85 1·62 8·01 11·58
Predictions based on the 21·07 83·77 114·72 131·37 294·70 323·29
Effective NFU FEM
Difference (%) 4·8 3·62 1·87 5·19 0·19 4·04
Predictions based on the 21·03 84·02 114·86 131·28 294·73 318·16
Effective NF-MSU FEM
Difference (%) 4·8 3·93 1·75 5·25 0·2 2·38

T 11

The modal assurance criteria (MAC) for the modified portal frame between the experiment,
modified initial FEM, the modified NFU updated effective FEM, and the modified NF-MSU

updated effective FEM

MAC MAC MAC MAC MAC MAC
(1,1) (2,2) (3,3) (4,4) (5,5) (6,6)

Experiment/predictions based on the 0·9946 0·9837 0·5392 0·1042 0·9655 0·8482
original (initial) FEM
Experiment/predictions based on the 0·9948 0·9914 0·9835 0·5919 0·9645 0·7604
NFU effective FEM
Experiment/predictions based on the 0·9948 0·9900 0·9847 0·5921 0·9826 0·8265
NF-MSU effective FEM

5. SUMMARY

This work has presented a method that allows an effective FEM to be directly developed
from an experimental modal database. The computational model geometry is based on the
experimental test grid and connectivity and uses beam and/or frame elements. An iterative
updating process at the element level forms the effective FEM. The simplified nature of
the FEM and the updating process produces a model capable of describing the low order
global dynamic characteristics. Furthermore, the effective model can be readily changed
to examine the effects of potential design changes. The approach sacrifices a certain level
of detail for the sake of rapid development time.

Both the proposed updating procedures, NFU and NF-MSU, have shown to be flexible.
If the natural frequencies and mode shapes are updated simultaneously, theoretically, the
implementation is not difficult. However, due to experimental errors, at least two hurdles
may be encountered: (1) it is difficult to evaluate the relationships between the natural
frequency and mode shape errors, (2) the updated results might be sensitive to the
experimental errors in a specific mode shape degree of freedom (DOF).
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Although the present development concentrated on beam/frame elements, the proposed
procedures are applicable to any general element type and structure. The updating can be
accomplished without a complete mode shape degree of freedom description. A high level
of flexibility exists in selecting the number of modes and the respective DOFs to be used
in the updating. In other words, an incomplete modal database is suitable for updating.
Also, the updating parameters can easily be selected to best meet the demands of the
problem. A simple multiplicative constant or a more specific parameter such as the
individual element area moment of inertia (I) may be used. Another important advantage
is that the mode shape updating is accomplished without any model condensation or
expansion.

The analysis of the computational study showed that both the proposed updating
procedures, NFU and NF-MSU, are accurate and flexible:

(1) For the simulated cantilever beam the updated FEMs show excellent natural
frequency and mode shape correlation in the target modes. The method is capable of
producing a FEM that can accurately replicate global low order experimental dynamic
characteristics. Natural frequencies typically were within 0·01% and MAC values greater
than 0·99 for a simulated noise free case. When experimental modal analysis uncertainty
was simulated, similar results were obtained (natural frequencies within 0·1% and MAC
values greater than 0·98).

(2) Improved correlation in the higher modes, not explicitly included in the updating
was observed.

(3) It is observed that the updated results based on the NF-MSU procedure are slightly
better than NFU procedure. The NF-MSU updating procedure improves both the natural
frequency and mode shape correlation whereas NFU updating procedure only improves
the natural frequency correlation. However, there is no evidence that the NFU updated
model degrades the mode shape correlation in relation to the initial FEM.

(4) The NFU procedure has the advantages of: (1) less required experimental effort
(only one test point is required to determine the target natural frequencies), and (2) less
computing effort.

The application of the procedure to produce an effective FEM to actual structural
redesign scenario was successful. The developed effective FEM produced superior results
in relation to the original FEM. Observations for the study can be summarized as:

(1) An effective FEM suitable for redesign analysis can be produced with actual
experimental modal and its inherent uncertainty. The effective FEM of the portal frame
produced natural frequencies within 5% and MAC values typically above 0·95. The results
showed significant improvement over the initial FEM where natural frequencies differences
greater than 15% were observed.

(2) The redesign analysis of the portal frame showed that the effective FEM produced
considerably more accurate results than the original model with natural frequency
predictions within 5·0% and MAC values above 0·98, with the exception of one mode.
This is a significant result in light that the evaluated design change was rather radical and
not a minor perturbation.

The study has demonstrated that the updated FEM retains consistency and physical
significance such that engineering design analysis is feasible. Since, the prediction of the
new dynamic characteristics is directly based on the effective FEM the updating is very
critical and requires careful consideration by the analyst. The present results indicate that
if handled properly the method is capable of producing accurate design change predictions
in a rapid fashion. However, it is realized that the analysis performed to date is rather
simple in nature. Further work is required to examine the method’s capabilities to handle
more realistic mechanical systems and possible design changes.
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APPENDIX: NOMENCLATURE

[M0]/K0] mass/stiffness matrix of the initial FEM whose entries are independent of the
updating parameters

[M0]/Kp] mass/stiffness matrix of the initial FEM whose non-zero entries are dependent on the
updating parameters
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[M]/[K] Global mass/stiffness matrix of the initial FEM ([M]= [M0]+ [Mp];
[K]= [K0]+ [Kp])

[M]UPD/[K]UPD updated (modified) global mass/stiffness matrix
[m0]i /[k0]i mass/stiffness submatrix of the FEM ith element whose entries are independent of

the updating parameters
[mpj]i /[kpj ]i mass/stiffness submatrix of the FEM ith element whose non-zero entries involve

components having the jth type of updating parameter
[mp]i /[kp ]i mass/stiffness submatrix of the FEM ith element whose non-zero entries are

dependent on the updating parameters ([mp ]i =a[mpj]i : [kp ]i =a[kpj ]i )
[m]i /[k]i mass/stiffness submatrix of the FEM ith element in global co-ordinates

([m]i =a[mpj]i +[m0]i ; [k]i =a[kpj ]i +[k0]i )
(fi )FEM FEM mode shape for the ith mode
{fi}EXP Experimentally measured mode shapes for the ith mode
li Eigenvalue for the ith mode
Vi natural frequency for the ith mode; li =V2

i

{Dl} Difference vector between the FEM and experiment for specified modes
[9l] Jacobian matrix of the eigenvalues with respect to the updating parameters
[9fi ] Jacobian matrix of the mode shape for the ith mode with respect to updating

parameters
Pij the jth type of updating parameter corresponding to the ith element of a FEM
{P} an updating coefficient array which represents all updating parameters
(DP) the changes of the updating coefficient array ({DP}= {P}− {1})
[WT] weighting matrix
> > Euclidean norm
(IUB)/(ILB) allowable upper/lower change bounds of the optimization variables
{ }T transpose of a matrix or vector
NmN Number of the measured modes
NE number of FEM elements
OPUNF Optimization Process for Updating Natural Frequencies
OPUMS Optimization Process for Updating Mode Shapes
NFU Natural Frequency Updating procedure
NF-MSU Natural Frequency and Mode Shape Updating procedure


